Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics

نویسندگان

  • Junhee Han
  • Li Zhu
  • Martin Kulldorff
  • Scott Hostovich
  • David G Stinchcomb
  • Zaria Tatalovich
  • Denise Riedel Lewis
  • Eric J Feuer
چکیده

BACKGROUND Spatial and space-time scan statistics are widely used in disease surveillance to identify geographical areas of elevated disease risk and for the early detection of disease outbreaks. With a scan statistic, a scanning window of variable location and size moves across the map to evaluate thousands of overlapping windows as potential clusters, adjusting for the multiple testing. Almost always, the method will find many very similar overlapping clusters, and it is not useful to report all of them. This paper proposes to use the Gini coefficient to help select which of the many overlapping clusters to report. METHODS The Gini coefficient provides a quick and intuitive way to evaluate the degree of the heterogeneity of the collection of clusters, which is useful to explain how well the cluster collection reveal the underlying true cluster patterns. Using simulation studies and real cancer mortality data, it is compared with the traditional approach for reporting non-overlapping clusters. RESULTS The Gini coefficient can identify a more refined collection of non-overlapping clusters to report. For example, it is able to determine when it makes more sense to report a collection of smaller non-overlapping clusters versus a single large cluster containing all of them. It also fulfils a set of desirable theoretical properties, such as being invariant under a uniform multiplication of the population numbers by the same constant. CONCLUSIONS The Gini coefficient can be used to determine which set of non-overlapping clusters to report. It has been implemented in the free SaTScan™ software version 9.3 ( www.satscan.org ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters

Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient fo...

متن کامل

Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data

The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and e...

متن کامل

Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic

Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel o...

متن کامل

Optimal and Fast Detection of Spatial Clusters with Scan Statistics1 by Guenther Walther

We consider the detection of multivariate spatial clusters in the Bernoulli model with N locations, where the design distribution has weakly dependent marginals. The locations are scanned with a rectangular window with sides parallel to the axes and with varying sizes and aspect ratios. Multivariate scan statistics pose a statistical problem due to the multiple testing over many scan windows, a...

متن کامل

Spatial analysis of influenza incidence in EMRO using flexible scan statistics

Introduction: Influenza is an infectious and severe respiratory disease. It is one of the major problems of public health. In order to determine the spatial distribution and areas with over-expected of a disease including influenza, it can be effective in identifying environmental hazards and fair distribution of health services. In this study, the geographical distribution of the influenza and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016